If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+40t+54
We move all terms to the left:
0-(-16t^2+40t+54)=0
We add all the numbers together, and all the variables
-(-16t^2+40t+54)=0
We get rid of parentheses
16t^2-40t-54=0
a = 16; b = -40; c = -54;
Δ = b2-4ac
Δ = -402-4·16·(-54)
Δ = 5056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5056}=\sqrt{64*79}=\sqrt{64}*\sqrt{79}=8\sqrt{79}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-8\sqrt{79}}{2*16}=\frac{40-8\sqrt{79}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+8\sqrt{79}}{2*16}=\frac{40+8\sqrt{79}}{32} $
| 3x+1=9*4 | | -2(4x-5)-10=-2(6x+2)-3 | | 77=6t+-17t | | 8=-r/5 | | M=m+1 | | M=2+m | | 12n=30*24 | | 3y/4=y/2+10 | | 12/24=30/n | | 77=6+-17t | | 11x=18-(-15) | | d/10+1/5=1/2 | | (y/4)+(3/4)=(y/3)-(3/4) | | h-75=100=56 | | y/4+3/4=y/3-3/4 | | 4+3x-2(x+1)=3x-6 | | 5/7x+9/14=3x/4+1/2 | | 0.36(6)+0.06x=0.12(24+x) | | |10n+7|=|n| | | 8p+3p=77 | | 3x^2+15x-6.7=0 | | 4.6+10m=6.71 | | 2(a-1)=3(a+3) | | 2x-3=5(x+4)+1; | | 6u^2+5u-25=0 | | 15-45=3(x-4)-9 | | 164=5/11(d) | | x-3+5/9=22+1/5 | | 10+(17-10)x=14.55 | | 2/3(1+n)=-1/2 | | 15.5x+14.6=12.2-3.5x | | 10+7c=14.55 |